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1 Introduction and Motivation

The prior distribution is an essential ingredient of
any Bayesian analysis, and it plays a major role in
determining the final results. As such, Bayesians at-
tempt to use prior distributions that have certain
properties. Perhaps the main property is a desire to
accurately reflect prior information, i.e., information
external to the experiment at hand. We would sup-
plement this vague property with a second equally
vague property. The posterior distribution should
exhibit behavior that is qualitatively acceptable.

The second property for prior distributions is
vague, but carries with it several implications. An
immediate implication is that we should dispense
with parametric Bayesian models in all but the sim-
plest of settings! This perhaps surprising implication
follows from an examination of various cases. As
a case in point, consider a survival analysis setting
where there is a follow-up period of limited dura-
tion. With large samples, one could hope to learn
the survival distribution over the follow-up period,
but there is no hope of learning the exact distribu-
tion of survival times beyond the follow-up period.
In Bayesian terms, with large samples, the poste-
rior distribution within the follow-up period would
be concentrated near the actual survival distribution
while the posterior distribution beyond the follow-up
period would not concentrate. In the limit, as the
experiment tended to one of infinite size, the pos-
terior distribution would ideally tend to a degener-
ate (and correct) distribution within the follow-up
period but would not tend to a degenerate distri-
bution beyond the follow-up period. In a similar
fashion, if event times are recorded on a scale of lim-
ited precision (for example, in terms of months), one
might hope to learn the survival distribution on the
monthly scale, but would have no hope of learning
the exact distribution on a finer scale. Parametric

prior distributions will typically provide degenerate
inference over the entire survival distribution and to
infinite precision with only limited precision, limited
follow-up data. Often, one only needs a discrete ob-
servation space consisting of p + 1 possible values in
order to obtain a degenerate posterior distribution
in the limit for a p dimensional parametric model.

Survival analysis provides but one example of this
general phenomenon. Consideration of such exam-
ples, where we desire a non-degenerate limiting pos-
terior, leads us to the belief that, for a Bayesian prior
distribution to accurately reflect prior opinion, the
prior distribution must be nonparametric.

Conversely, instead of seeking to use prior distri-
butions that do not have degenerate limiting behav-
ior with data of restricted sort, we can seek to use
prior distributions that do have partially degener-
ate limiting behavior. In the survival analysis set-
ting, this would mean that the posterior predictive
distribution on the monthly scale, and during the
follow-up period, would tend to degeneracy. Fur-
thermore, in this case, we would like the posterior
predictive distribution to concentrate at the actual
survival distribution. A minimal, though not suffi-
cient, condition for ensuring that the posterior be-
comes degenerate at an appropriate point is that the
prior distribution has full support. Imposing a para-
metric form on a distribution restricts its support.
Again, nonparametric distributions provide a poten-
tial solution since they can have full support.

Nonparametric Bayesian methods provide a
means of creating prior distributions that accurately
reflect prior knowledge in the sense that they satisfy
the basic desireable qualitative features of inference.
In this work, we provide a framework that encom-
passes a wide range of nonparametric Bayesian mod-
els. The framework naturally suggests new classes
of these models which are amenable to simulation
based fits with the same technology used to fit fi-
nite mixture models and models based on Dirichlet
process (DP) priors (reviewed in the next section).

This work was first presented at the ENAR meet-
ing in the spring of 2001. Since this presentation, the
authors have become aware of work that generalizes



the DP by Hjort (2000) and by Ishwaran and James
(2001). There is some overlap in the various gener-
alizations. This talk and a companion talk, which
described spatial applications of these models, were
presented at the 2001 JSM.

2 The Dirichlet Process

Sethuraman’s representation (Sethuraman and Ti-
wari, 1982; Sethuraman, 1994) of the DP provides a
natural starting point for more general nonparamet-
ric Bayesian processes. It decomposes a distribution
on a r.v. ξ into two parts: the locations and the
masses associated with them.

The rule for generation of the locations is to draw
a random sample from some distribution. Using θi

to denote the ith location, we have θi i.i.d. Fθ.

The rule for generation of the masses is given in
two steps. First, a random sample of beta vari-
ates, Vi i.i.d. Beta(1,M), is drawn independently
of the θi. Here, M is the mass parameter of the DP.
Next, these variates are turned into a set of proba-
bilities through the relationship p1 = V1 and pi =
Vi

∏

j<i(1 − Vj), for i = 2, 3, . . ..

The final distribution on ξ is (almost surely) dis-
crete. For each measureable set A,

P (ξ ∈ A|{θi, Vi}
∞

i=1) =
∑

i:θi∈A

pi. (1)

Importantly, this construction leads to a more
general class of distributions than does Ferguson’s
(1973) DP definition. With Ferguson’s development,
the θi may be scalars or vectors; with Sethuraman’s
development, the θi may be stochastic processes. As
MacEachern (2000b) has shown, letting x represent
the index of the real-valued or vector-valued stochas-
tic process, and identifying x with a covariate or co-
variates, the more general version of the DP provides
a collection of distributions, indexed by the covari-
ate. These collections of distributions have many
attractive properties and are useful in a wide vari-
ety of modeling situations, especially when used as
a component in a hierarchical model.

Following the framework that leads to (1), we can
describe much more general classes of models. For
the purposes of this paper, we will restrict discus-
sion to countable (including finite) mixture models,
although there is both motivation and scope for ex-
tending the results to models that do not naturally
have such a representation. We plan to examine
some of these other models in further work.

3 Building blocks

Sethuraman’s construction of the DP consists of two
building blocks: The distribution for a θi, and the
distribution for a Vi. These building blocks are cou-
pled with an assumption of independence of all the θi

and Vi. The remarkably clean construction suggests
immediate ways to generalize the DP. A first direc-
tion for generalization is to allow the θi to be more
general than a vector. A second direction is to allow
the Vi to come from some distribution other than a
beta. This can occur in two ways: the Vi may them-
selves be stochastic processes, indexed by the same x
that indexes θi or the Vi or Vi(x) can have other dis-
tributions on the unit interval. This is the heart of
the dependent Dirichlet process (DDP) (MacEach-
ern, 2000a, b). Through appropriate choice of distri-
butions for θi and Vi, one can obtain a wide variety
of useful models. In this section, we describe build-
ing blocks for a more general process.

3.1 The locations

Suppose that we wish to form a distribution for a
random variable taking values in Rp. For models not
involving a covariate, our basic requirement would
be that Fθ is a distribution on Rp. In the event that
we wished to have a family of distributions indexed
by a covariate, we would take θi to be a stochastic
process, indexed by the covariate x. We would re-
quire that the range of the covariate be contained
in the index set of the stochastic processes. The
stochastic process would be vector (of dimension p)
valued.

A capsule description of these two models for the
locations follows.

• DP. The θi are i.i.d. from some distribution Fθ.

• DDP/DP. The θi are a random sample of
stochastic processes. θi(x) assumes values in
Rp for each x.

3.2 The masses

There is more flexibility in the building blocks for the
masses. A primary division is whether the masses
are or are not indexed by a covariate. The DDP al-
lows the masses to be indexed by a covariate whereas
the DP does not. The Vi must, of course, assume
values in the set [0, 1]. More properly, for the con-
structions below, they must have the property that
limn→∞

∏n
i=1(1− Vi) = 0, almost surely. When in-

dexed by x, we require that the above condition ei-
ther hold for almost all x or for all x.



This division of building blocks for the masses
leads to two different sorts of models in the con-
text where there is a covariate x. When Vi does not
vary with x (or equivalently, when Vi(x) does not
vary with x), the model produces a single mixture
distribution. This distribution may be real or vec-
tor valued, as has traditionally been the case with
the DP. Or, as can happen when the locations are
stochastic processes, the distribution may yield an
uncountable collection of distributions, with a dis-
tribution for each level of the covariate, x. When
Vi(x) does vary with x, however, there is no unique
representation of the collection of distributions as
a single distribution. The model merely specifies a
(perhaps uncountable) collection of conditional dis-
tributions.

A brief description of building blocks for the
masses follows.

• DP (also single-p DDP). The Vi are i.i.d.
Beta(1, M).

• Countable mixture. The Vi are i.i.d. from some
distribution FV . FV assigns all of its mass to
the interval [0, 1), and some of its mass to the
interval (0, 1).

• Finite mixture. The Vi are i.i.d. from some dis-
tribution FV . FV assigns all of its mass to the
interval [0, 1], and positive mass to the singleton
{1}. The mass at 1 ensures that the mixture will
be finite; a consequence of this model is that the
number of components in the mixture follows a
geometric distribution.

• DDP. The Vi form a random sample of
stochastic processes. For each x, Vi(x) ∼
Beta(1, M(x)). The mass parameters M(x)
may vary with x. When the possible values for
x have more than countable cardinality, addi-
tional conditions are needed to ensure that all
of the mass is used for each x.

• Countable mixture analog of the DDP. The Vi

form a random sample of stochastic processes.
For each x, there is some FV (x) that assigns all
of its mass to the interval [0, 1), and some of
its mass to the interval (0, 1). FV (x) is not nec-
essarily a beta distribution. Again, additional
conditions are required in order to ensure that
all of the mass is used for each x.

• Finite mixture analog of the DDP. The Vi form
a random sample of stochastic processes. For
each x, there is some FV (x) that assigns all of
its mass to the interval [0, 1] and positive mass

to the singleton {1}. Again, additional condi-
tions are required in order to ensure that all of
the mass is used for each x. Assumptions about
the distribution of the process V (x) determine
features of the finite mixture. For example, if
the path Vi(x) is either entirely in the inter-
val (0, 1) or is identically equal to 1, all of the
conditional distributions indexed by x will have
the same number of mixture components. For
stochastic processes whose paths behave differ-
ently, the number of components in the mixture
may vary with x. With appropriate conditions
on the paths Vi(x), one can guarantee that the
number of components in all of the mixture dis-
tributions is uniformly bounded.

The assumption that the Vi are i.i.d. from some
distribution can obviously be relaxed. Relaxing the
assumption of identical distributions provides more
flexible tail behavior. For example, the Vi might
be independent Beta(1, Mi) variates. Retaining an
independence structure for the Vi, at least for large
i, is computationally advantageous.

4 More general processes

To create a novel model, we need only ensure that
we select a building block for the locations and one
for the masses. Existence of a joint probability space
is guaranteed by standard results in probability the-
ory. See, for example, Ash’s (1972) description of
product measure. His description includes a count-
able or finite number of components. It also applies
to components that are stochastic processes as well
as real or vector valued random variables.

Once a joint probability space has been defined,
one merely needs to check that the purported distri-
butions (conditional on x) are indeed distributions.
This leads to a condition on the locations that, for
each x, across i, the locations represent the same
type of quantity. A set A must be measureable
across i in order for one to accumulate the corre-
sponding pi as in equation (1) above. In typical
applications with a covariate, θi will be a vector val-
ued stochastic process. A random sample of these
locations will automatically satisfy this condition.

The condition on the masses is more difficult to
check. Since the Vi(x) are, in all cases, confined to
the interval [0, 1], the construction of the pi(x) en-
sures that

∑

∞

i=1 pi(x) ≤ 1 for all x. Thus, we have
defined a collection of sub-distributions. In order to
obtain a collection of distributions, we need to en-
sure that all of the probability is used for each x. If
the covariate space is finite or countable, all of the



building blocks described above lead to a valid col-
lection of distributions. That is, since at each level of
the covariate the model almost surely defines a dis-
tribution, the finite or countable collection of distri-
butions is also almost surely defined. For a covariate
space that has larger cardinality, various conditions
on the paths of the Vi(x) guarantee the almost sure
existence of the entire collection of distributions.

Instead of placing conditions on the paths of
stochastic processes, an alternative approach that
turns any sub-distribution into a distribution is to
add one more component to the mixture. We call
this component the null component. Formally, we
define one more location, θ0, that is independent of
and that has the same distribution as the other lo-
cations. We assign mass p0(x) = 1 −

∑

∞

i=1 pi(x)
to this component at covariate level x. Thus, the
null component sweeps up all of the left-over mass
at whatever values of x are short of mass. This tech-
nique is useful for finite mixture models where one
might focus on the first several components of the
mixture and attempt to sweep the remaining details
of a distribution under the rug.

A particularly appealing class of models is one we
call head and tail models. These models depart from
the structure outlined above. We define a finite mix-
ture model, that may depend on a covariate, for
the first few components. Hence we have a distri-
bution on the first k locations and masses, θi, Vi, i
= 1,...,k. These parameters need not be indepen-
dent nor identically distributed. Call this the head
of the model. We define a countable (or finite) mix-
ture model for the remaining components by choos-
ing building blocks for the locations and masses de-
scribed above. Call this the tail of the model.

Head and tail models are attractive because they
allow us to address the first property for Bayesian
prior distributions: accurate reflection of prior in-
formation. A traditional shortcoming in the use of
nonparametric Bayesian procedures has been a lim-
itation on the form of information injected into the
prior distribution.

As a case in point, we consider problems falling
under the heading of classification or cluster anal-
ysis. As described above, many nonparametric
Bayesian models can be described as mixture dis-
tributions, and mixtures lie at the heart of the clas-
sification problem. With the traditional formula-
tion, there are a finite number of groups, each with
a probability distribution. In many instances, the
labels on the classes are meaningful, and there may
be substantial information about the parameter val-
ues associated with the different classes. The head
of the model allows one to use a prior distribution

that identifies some components of the mixture and
that places informed prior distributions on their pa-
rameters. The distributions for these classes may be
dependent, for example, they may capture an order-
ing apparent in previous data sets, or they may arise
through combination of estimates based on previous
data sets. The head of the model also allows one
to express informed opinion as to the relative preva-
lence of the different classes. When several classes
are approximately equal in prevalence, one would
write a distribution reflecting this by placing an ap-
propriate joint distribution on V1,..., Vk which can-
not easily be obtained from independent Vi.

The tail of the model ensures, or at least makes
it possible, that we satisfy the second property for
prior distributions. The tail can guarantee full sup-
port for the prior distribution which in turn provides
the dual benefits of not forcing degenerate limiting
behavior where we don’t want it and of making con-
sistent estimation possible.

Head and tail models are computationally attrac-
tive. Since the head of the model follows a finite
mixture distribution, Markov chain Monte Carlo
simulation strategies developed for such distribu-
tions enable us to perform all of the requisite condi-
tional generations. The tail matches a nonparamet-
ric Bayesian model, and so we make use of compu-
tational strategies developed for these models.

5 Consistency in a generalized logis-

tic regression setting

Consider the following extension of the logistic re-
gression model where xi is a possibly vector-valued
covariate,

ξi|xi ∼ Fxi

Yij |ξi ∼ Binomial(n, ξi),

where the usual conventions of conditional indepen-
dence apply. We supplement the model with an as-
sumption that data are collected at a fixed set of m
design points, x1, . . . , xm. Assume that the design
is balanced and that the replication at each design
point tends to ∞.

Suppose that the true sampling distribution of Yij ,
conditional on xi, is given by

mxi
(y) =

∫
(

n

y

)

ξy(1 − ξ)n−ydFxi
(ξ),

where Fxi
is an arbitrary distribution with support

on the unit interval. Under this assumption, and an
additional assumption that the implied prior distri-
bution on the sampling distribution for Yij has full



support, we conclude that the posterior predictive
distribution, m̂xi

at each xi ∈ {x1, . . . , xm} tends to
the sampling distribution at that point, mxi

.
To establish this result, we repeat, with minor

modification, an argument that appears, among
other places, in MacEachern, Clyde and Liu (1999).
The argument turns the problem into a finite di-
mensional inference problem and then relies on the
standard asymptotic argument to show convergence
of the posterior (here the posterior predictive) dis-
tribution to the sampling distribution.

• There is a one-to-one match between the first n
moments of Fxi

and probabilities for the n + 1
possible outcomes for Y |xi. Consequently, the
set of m distributions mx1

, . . . , mxm
is deter-

mined by the mn dimensional parameter which
consists of the first n moments of Y at each of
the m levels of the covariate. Consider the vec-
tor (Y1j , . . . , Ymj) to consist of m conditionally
independent components.

• The prior distribution on (Fx1
, . . . , Fxm

) in-
duces a prior distribution on the first n mo-
ments of ξx1

, . . . , ξxm
. In turn, this induces a

distribution on (Y1j , . . . , Ymj).

• A data value, described as (Y1j , . . . , Ymj), can
also be viewed as a multinomial observation.

• Asymptotically, the likelihood of the mn dimen-
sional parameter concentrates on the closest pa-
rameter values in the support of the prior distri-
bution. Proximity is measured by the Kullback-
Liebler divergence.

• Consistency follows from full support for the
mn dimesional moment parameter. This full
support is a consequence of full support of the
distributions Fx1

, . . . , Fxm
.

To tidy up the details of this argument, some care is
needed with the metrics that underlie a description
of full support. MacEachern (2000b) contains details
of the unusual metric on a collection of distribution
functions.

The model that we describe here extends previ-
ous Bayesian modelling efforts on logistic regression.
Consider the following collection of models. The first
model is a straight logistic regression model. With
g(x) = logit(x′β) for some vector β, we have Yij |xi

∼ Binomial(n, g(x′β)). This model is very restric-
tive. The two main implications are that the co-
variate must enter the argument for g(·) in a linear
fashion and that all of the Bernoulli trials at covari-
ate level xi are judged to be i.i.d., even across the

binomial samples. Such a model has a restrictive
mean structure and does not allow the Yij to exhibit
overdispersion. Consequently, it will be inappropri-
ate for many binomial-logistic regression data sets.

The second model remedies the problem of a re-
strictive mean structure. This can be accomplished
by allowing a more general, possibly nonparametric
form for g(·), thus including probit and other link
functions. Typically, we would retain an assumption
of monotoncity of the link function g(·). The restric-
tions on the mean structure can also be relieved by
replacing the linear form for x′β with a more flexible
form. The two main approaches are through model
building–adding more covariates, perhaps through
creation of new covariates which are functions of
those in the model–and through nonparametric re-
gression. However, these models still imply that
Yij |xi follows some binomial distribution.

The third model remedies the problem of a fixed
dispersion or of a conditional binomial distribution
for Yij |xi. This model adds what is often described
as a random effect associated with each sample.
Thus, expanding on the first model, x′

iβ would be
replaced by x′

iβ + εij , yielding a distribution for
Yij |xi that is a mixture of binomials. The usual as-
sumption on the εij is that they are independent
and normally distributed with mean 0 and some
fixed variance, σ2. Since g(·) is a nonlinear func-
tion, E[Yij |xi, β, σ2] is a function of σ2. Thus, the
standard way to add overdispersion to the model
also perturbs the mean structure.

An alternative formulation of the third model
that avoids this problem is to add a stage to the
model where µij ∼ Beta(α1, α2) with the restric-
tion that α1/(α1 + α2) = g(x′β). This formulation
of the model allows one to add overdispersion di-
rectly while not affecting the mean structure of the
model. It also has the advantage of matching the
beta-binomial model that many would use if many
“binomial” samples were collected at a single level
of the covariate.

The second and third models are often used sep-
arately, though they can be used in conjunction
with one another. Mukhopadhyay and Gelfand
(1997) have created such a family of nonparamet-
ric Bayesian models. They provide a model that in-
corporates nonparametric components in two places,
yielding an arbitrary, monotonic increasing link and
also an arbitrary distribution for the random effects.
However, their model relies on additive random ef-
fects resulting in a restriction on its support.

The models that we describe in this paper repre-
sent a natural completion of the modelling strategies
described above, allowing us to obtain full support



for our prior distribution. To obtain full support,
we need to choose appropriate building blocks for
the nonparametric prior distribution. The key fea-
tures in this context are to allow an arbitrarily large
number of components in the model–whether this
is accomplished by assigning probability 1 to count-
able mixture distributions or by assigning positive
probability to finite mixture distributions with an
arbitrarily large number of components–and to al-
low the θi associated with the various components
to differ for the different levels of the covariate.

6 DDP modeling for spatial data

analysis

Consider point referenced spatial data assumed to
form a sample from a realization of a random field
{Y (s) : s ∈ D}, D ⊆ Rd. Denote by s1, ..., sn the lo-
cations in D where the data Y′ = (Y (s1), ..., Y (sn))
are collected. Typically, a Gaussian random field is
assumed resulting to a multivariate normal specifi-
cation for Y. Within hierarchical modeling, obser-
vations are assumed conditionally independent given
model parameters at the first stage, with spatial de-
pendence introduced at the second stage in the prior
distribution of the parameters. However, the under-
lying parametric distributional assumptions result in
models that do not have full support and might fail
to reveal important features of the data.

A semiparametric model can be developed em-
ploying a single-p DDP prior on the random field FD .
Here, the Vi are i.i.d. Beta(1, M) and the locations,
θi,D = {θi(s) : s ∈ D}, are random realizations from
some base random field F0D over D. For instance,
F0D might be a mean zero stationary Gaussian ran-
dom field. Attractively, although the prior for FD

is centered around a stationary process, it can be
shown that random realizations have nonconstant
variance and are nonstationary.

To overcome the almost sure discreteness of the
prior on FD we can mix it against a white noise pro-
cess (nugget process with zero mean and variance τ 2)
to create random processes G which have continuous
support. More explicitly, if θD is a realization from
FD and YD−θD is a realization from the white noise
process then marginally YD arises from the process
G which can be defined as the convolution

G
(

YD | FD , τ2
)

=

∫

K
(

YD − θD | τ2
)

FD (dθD) .

Differentiating to densities,

g
(

YD | FD , τ2
)

=

∫

k
(

YD − θD | τ2
)

FD (dθD) .

(2)

Here K is the distribution function and k is the den-
sity function of the white noise process.

For the finite set of locations s1, ..., sn, (2) implies
that the joint density of Y given FD and τ2 is al-
most surely of the form

∑

∞

i=1 pifNn
(Y | θi, τ

2In),
where θi = (θi(s1), ..., θi(sn)), i.e., a countable loca-
tion mixture of normals. A constant mean term µ
can also be added to the kernel of this mixture. The
full Bayesian model is completed with priors on µ,
τ2, the parameters of the covariance matrix of F0D

and possibly M . Simulation based model fitting is
routine for this single-p DDP model building on ex-
isting techniques for DP based models.

An important extension is to spatial-temporal
modeling which requires two single-p DDP priors.
Even more interesting, but also more challenging at
least computationally, is the extension of the mod-
els to incorporate general DDP priors so that the
Vi also depend on spatial location. The full devel-
opment of the methodology outlined in this section
will be reported elsewhere.
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